《圆的标准方程》说课稿
作为一名教学工作者,通常会被要求编写说课稿,说课稿有助于顺利而有效地开展教学活动。那么大家知道正规的说课稿是怎么写的吗?以下是小编为大家收集的《圆的标准方程》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
《圆的标准方程》说课稿1教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法 启发式教学法 讲授法
学法指导
自主学习法 讨论交流法 练习巩固法
教学准备
ppt课件 导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1.观赏生活中有关圆的图片
2.回顾复习圆的定义,并观看圆的生成flash动画。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用
自主学习
(5分钟)
1.介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程 ;
(4)化简:对P(M)方程化简到最简形式;
2.学生自主学习圆的方程推导,并完成相应学案内容,
教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1.根据圆的标准方程说明确定圆的方程的条件有哪些?
2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
学生展开合作性的探讨,并陈述自己的研究成果。
通过合作探究和自我的展示,鼓励学生合作学习的品质
当堂训练(18分钟)
1.求下列圆的圆心坐标和半径
C1: x2+y2=5
C2: (x-3)2+y2=4
C3: x2+(y+1)2=a2(a≠0)
2. 以C(4,-6)为圆心,半径等于3的圆的标准方程
3. 设圆(x-a)2+(y-b)2=r2
则坐标原点的位置是( )
A.在圆外 B.在圆上
C.在圆内 D.与a的取值有关
4.写出下列各圆的标准方程(1)圆心在原点,半径等于5
(2)经过点P(5,1),圆心在点C(6,-2);
(3)以A(2,5),B(0,-1)为直径的圆.
5.下列方程分别表示什么图形
(1) x2+y2=0
(2) (x-1)2 =8-(y+2)2
(3) 《圆的标准方程》教学设计-贾伟
6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图
指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。
学生自主开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1.你学到了哪些知识?
2.你掌握了哪些技能?
3.你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
教学反思
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。
《圆的标准方程》说课稿21.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关 ……此处隐藏1430个字……,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。
三、学法分析
我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。
四、教学程序
1、创设情境,激发兴趣。
问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?
问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。
通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。
2、探索实践,推导方程。
让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。
圆心是C(a,b),半径是r,求圆的标准方程:
注:当圆心在原点时,圆的标准方程为:
3、实践应用,巩固提高。
复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)
(1)点P在圆内,则|PC|<r
(2)点P在圆上,则|PC|=r
(3)点P在圆外,则|PC|>r
设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。
穿插课堂练习,反复巩固新知。
1.口答下列各圆的标准方程
(1)圆心在(8,-3),半径为6 _______________________
(2)圆心在(0, 2),半径为 ________________________
(3)圆心在原点,半径为4 ________________________
2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点
(0,0)与圆的位置关系。
设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。
例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。
设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。
4、课堂小结,回味无穷。
(1)圆心为C(a,b),半径为r的圆的标准方程为:
(2)当圆心在原点时,圆的标准方程为:
(3)数形结合的思想方法
5、回家作业,课后巩固。
练习册P7.习题7.3(1)/1、2、3、4
6、课后思考,扩展延伸。
1.把圆的标准方程展开后是什么形式?
2.方程:
7、板书设计
《圆的标准方程》说课稿5(一)说教材
1、教材结构编排:
本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。
2、教学目标
知识目标:
(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、
(2)已知圆心和半径会写出圆的标准方程、
能力目标:
(1)培养学生数形结合能力、
(2)培养学生应用数学知识解决实际问题的能力
情感目标:
(1)培养学生主动探究知识,合作交流的意识。
(2)在体验数学美的过程中激发学生学习的兴趣。
3、教学重点
(1)圆的标准方程
(2)已知圆的标准方程会写出圆的圆心和半径
(3)已知圆心坐标和半径会写出圆的标准方程
4、教学难点
(1)圆的标准方程的推导
(2)圆的标准方程的应用
(二)说教法
本节课采用讲练结合,启发式教学
(三)说学法
1、 主动探究学习
2、 小组合作学习
(四)说教学过程
1、导入
通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。
2、知识衔接
(1)圆的定义,圆上的点具备的特征性质
(2)平面上两点间的距离公式
通过复习为后边推导圆的标准方程奠定基础,降低难度。
3、新课学习
(1)推导圆的标准方程(化解难点)
怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。
(2)圆的标准方程(突出重点)
先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径
(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。
(4)小结本节的重点知识
(5)根据所学为了加强巩固,适当的布置作业
(五)说板书设计
正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。
文档为doc格式